

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

title: API Client
sidebar_label: API Client

Longclaw comes with a handy API javascript client to simplify making HTTP requests.

To load the client into your HTML templates, you can use the template tags:

 {% load longclawcore_tags %}

 {% longclaw_vendors_bundle %}
 {% longclaw_client_bundle %}

This will render the <script> tags necessary to load the javascript. The api client
will be available as a global object called longclawclient.
You can access the methods by calling the request name (e.g. basketList) and the desired method::

longclawclient.basketList.get({ ... })
longclawclient.basketList.post({ ... })

API Reference

orderDetail

supports GET methods. Requires an id url parameter
longclawclient.orderDetail.get({ urlParams: { id: ... } })

fulfillOrder

supports POST methods. Requires an id url param.
longclawclient.fulfillOrder.post({ urlParams: { id: ... } })

checkout

supports POST method. requires JSON data.
longclawclient.checkout.post({ data: { ... } })

checkoutToken

supports GET method.

basketList

supports GET and POST methods

basketListCount

supports GET methods

basketDetailCount

supports GET method. Requires id url param.

basketDetail

supports DEL method. Requires id url param.

shippingCost

supports GET method. requires country_code query param
longclawclient.shippingCost.get({ queryParams: { country_code: 'gb' } })

shippingCountries

supports GET method

addressList

supports GET and POST methods

addressDetail

supports GET, PUT, DEL methods

All methods take a config object of options which can optionally contain:

| Parameter | Description
|:———–:|—————-
| url | Completely override the URL to use
| prefix | Use a different prefix or host for calling the endpoint.
| urlParams | replacement parameters for the endpoint. for example, if the endpoint is specified as booking/{id}/, urlParams should be an object containing an id key and the string to replace it with, e.g: { id: '123' } would result in the endpoint being modified to booking/123/
| queryParams | An object containing key-value pairs which will be mapped to a query string. E.g. { first_name: 'John', last_name: 'Smith' } would result in the endpoint being modified to booking/123/?first_name=John&last_name=Smith
| data | Data object to send with the POST/PUT request. Will be converted to JSON.

It is important to note the config.prefix option. You will almost always need to specify this
to match the API_URL_PREFIX setting in your django settings. This can be done by including it in
your template view as e.g. a data attribute on a element and then accessing it through the dataset
attribute in javascript, e.g:

 document.getElementById('my-element').dataset.apiUrlPrefix

Usage with ES6 modules

To use the client with other ES6+ modules, install the client library from npm:

 npm i longclawclient --save

Then import the api library:

 import api from 'longclawclient'

title: Basket
sidebar_label: Basket

The basket (or ‘shopping cart’) is a collection of BasketItem objects, tied to the django session and as such, expires when the session expires.

Each BasketItem has a basket_id allowing items to be grouped together in a ‘basket’.

Fetching the basket

The function longclaw.basket.utils.get_basket_items will return all BasketItem for the current
session. This accepts a django request object and uses longclaw.basket.utils.basket_id to
fetch the underlying basket_id on which to filter the BasketItem objects.

On the front end, you can use the API endpoint <api_prefix>/basket/ or the django view basket/. You should
provide a template for the view title basket.html. basket is also the name of the context variable
containing all basket items.

A BasketItem has two fields of importance; quantity and variant. The latter is a foreign key to the
ProductVariant model.
In a django template, you can iterate over the basket items like so:

 {% for item in basket %}
 {{ item.quantity }}
 {{ item.variant.price }}
 {{ item.variant.stock }}
 {{ item.variant.ref }}
 {{ item.variant.product.title }}
 {{ item.variant.product.description }}
 {% endfor %}

The API JSON response will contain all fields of the ProductVariant and Product:

 {
 quantity,
 variant {
 price,
 stock,
 ref,
 product {
 title,
 description,
 images,
 ...
 }
 }
 }

Adding and Removing items

Items can be added or removed via the RESTful api:

POST to <api_prefix>/basket/ to add an item and DELETE to <api_prefix>/basket/<variant_id>/ to remove an item

When adding an item, provide the variant_id in the request data. For both endpoints, you can optionally provide the quantity in
the request data.

There is currently no django view for addition/deletion of basket items.

Other API Endpoints

basket/:variant_id/count/

get the quantity of a single item in the basket. Requires variant_id in the request data

basket/count/

get total number of items in the basket

All basket items can be deleted using the longclaw.basket.utils.destroy_basket function.
When an order is successfully placed, the basket will be automatically destroyed.

Longclaw does not automatically clean up abandoned baskets. This can occur when a session ends
with items still in the basket (i.e the customer did not place an order). This allows you to provide checkout recovery,
with the caveat that you will need to do your own cleanup of rogue BasketItem objects when required.

title: Checkout
sidebar_label: Checkout

Longclaw provides a simple, single checkout view.
The URL for the checkout is 'checkout/'.
After a successful checkout, it is redirected to checkout/success/.

To implement the checkout, simply provide 'checkout/checkout.html' and
'checkout/success.html' templates. (Empty templates will have been created if
you ran the longclaw CLI to start your project)

There are three forms provided in the checkout view:

checkout_form

Captures the email address and optionally the shipping option for the checkout.
Also captures a boolean indicating whether a different billing address should be used

shipping_form

Captures shipping information.

billing_form

A second address form for capturing alternate billing information. If you do not submit this form
(e.g. by not rendering it on the template), the billing and shipping addresses are assumed to be the same.

Generally, you may need to use a little javascript to optionally render the form if the user selects
‘different billing address’.

Shipping Options and Javascript

The shipping option dropdown has no options by default - this is because it is dependent on the shipping country.
The checkout form includes the necessary javascript to do this - you just need to include it on the page.
You will typically also need to include your chosen payment gateways’ client javascript:

 {% gateway_client_js as scripts %}
 {% for js in scripts %}
 {{ js|safe }}
 {% endfor %}

 {% longclaw_client_bundle %}
 {{ checkout_form.media }}
 <script type="text/javascript">
 initShippingOption('{% longclaw_api_url_prefix %}');
 </script>

The first half uses the gateway_client_js template tag to load all the payment gateway javascript. There may be one or more.
The second half has three parts to it:

	{% longclaw_client_bundle %} loads the longclaw client API, which is required by the checkout form javascript.

	{{ checkout_form.media }} loads the javascript required by the checkout form.

	The last script initializes the checkout javascript. It requires the longclaw API url prefix (which you can customise in your settings)
to be passed in - there is a template tag to do this for you. You can also optionally specify the shippingCountrySelectId and shippingOptionSelectId.
These are the ID’s of the select element. You would only need to pass these in if you are going to change them from the defaults.

After this, when you change the shipping country, the shipping option should change appropriately.

We will hopefully improve this in future releases - any ideas and PR’s are welcome!

Payment forms

It is up to you to render a payment form and then pass the token in the POST data.
Normally, the payment gateway chosen will have a javascript integration to render a form for you
and tokenize the payment method (e.g. braintrees ‘hosted fields’)

Longclaws’ payment gateways provide some helpful utilities to load client javascript and generate tokens.
Loading longclawcheckout_tags in your template will allow you to retrieve the gateways’ javascript libraries
as script tags ({% gateway_client_js %} and generate a client token ({% gateway_token %}).
A little javascript is then required to setup your form and ask the gateway to tokenize the payment method for you.
You should then add this token to the request POST data (e.g. with a hidden input field).

For in-depth info on integration, see the walkthrough.

title: Checkout API
sidebar_label: Checkout API

The checkout API allows you to create more complex javascript-based checkout flows by providing some
simple endpoints for capturing payments and orders.
In the front end, you should:

	Collect the customer email

	Collect the shipping and billing address

	Payment capture by tokenizing the payment method (e.g. credit card) or payment itself

	(Optionally) calculate the shipping costs

	Submit all the information to the server in an AJAX POST request.

The first two are relatively simple to achieve. Longclaw provides some utilities to help with the rest.

Payment Capture

With Longclaw you can either tokenize the customers payment method (e.g. credit card) and
send this to the server for the payment to be captured, or you can use a service such as paypal
express checkout, which captures the payment directly and returns a token representing the transaction
id. You would then submit this token to your server.

The second option is often easiest to integrate since the user is redirected to the 3rd party site for payment.
(This is increasingly done via a modal popup rather than a redirect, which makes the user experience smoother).
The first option offers tightest integration with the look and feel of your site, but invariable involves more
front end work and validation.

Tokenizing the Payment

To capture the payment with a 3rd party service, you will include some external javascript on your page
and often designate a button or div to initialise the popup/redirect. You will also specify a submit
handler to receive the token representing the transaction.

For example, the braintree javascript client allows express checkout using Paypal. Full details of how
to setup are here [https://developers.braintreepayments.com/guides/paypal/checkout-with-paypal/javascript/v3].
Other providers such as Stripe offer similar services.

Once you have received this token, you should submit it, along with the shipping address, billing address,
email and shipping rate to the api/checkout/prepaid/ endpoint.

The api/ prefix can be configured in your django settings under API_URL_PREFIX.
For example, if you want to distinguish the longclaw API from your own, you could set API_URL_PREFIX="api/longclaw/"
The checkout url would then be api/longclaw/checkout/prepaid/

The JSON request data would look like:

 {
 "transaction_id": "...",
 "shipping_rate": 0.0,
 "email": "john@smith.com",
 "address": {
 "shipping_name": "john smith",
 "shipping_address_line_1": "...",
 "shipping_address_city": "",
 "shipping_address_zip": "",
 "shipping_address_country": "",
 "billing_name": "john smith",
 "billing_address_line_1": "...",
 "billing_address_city": "",
 "billing_address_zip": "",
 "billing_address_country": "",
 }
 }

transaction_id is the token returned from the payment processor e.g. paypal

When using this method, you do not need to define the PAYMENT_GATEWAY setting.

Tokenizing the Payment method

Alternatively, you can pass the payment method for Longclaw to manually capture the payment.
Longclaw expects the payment details (i.e. credit card) to be passed as some kind of token in
a POST request to api/checkout/.
Longclaw will then use the payment gateway defined by the PAYMENT_GATEWAY setting to capture
the payment.
To create the initial token representing the customers payment information, you may be able to use
the api/checkout/token/ endpoint, passing the card information in the request data. This is dependent
upon the backend and it may be preferable to use client javascript libraries provided by your payment
gateway (e.g. stripe.js or braintree-web) to generate a token.

Once the token is generated, the request data to send to api/checkout/ is very similar to that for
api/checkout/prepaid/:

 {
 "token": "...",
 "shipping_rate": 0.0,
 "email": "john@smith.com",
 "address": {
 "shipping_name": "john smith",
 "shipping_address_line_1": "...",
 "shipping_address_city": "",
 "shipping_address_zip": "",
 "shipping_address_country": "",
 "billing_name": "john smith",
 "billing_address_line_1": "...",
 "billing_address_city": "",
 "billing_address_zip": "",
 "billing_address_country": "",
 }
 }

| Parameter | Description
|:————-:|——————
| token | The token for customer details. The key name is dependent on the backend (“token” for stripe, “payment_method_nonce” for braintree)
| shipping_rate | Number or string representation of a number (will be cast to float). The shipping costs
| email | The customers’ email

The "token" key is dependent upon the payment backend and may be named differently.

Both api/checkout/ and api/checkout/prepaid/ return a 201 response with order_id in the JSON data.
If the payment fails, api/checkout/ will return a 400 response with order_id and message in the JSON data.

Calculating Shipping Costs

You will have noticed the need to send shipping_rate with the checkout. If you are using Longclaws’ shipping
settings, you can easily calculate the shipping cost either in python or by using the api/shipping/cost/ endpoint.

Python example:

 from longclaw.shipping import utils
 from longclaw.configuration.models import Configuration

 country_code = "GB" # ISO 2-letter country code for a configured shipping rate
 option = "standard" # Name of shipping rate configured through longclaw admin (only used if more than one shipping rate exists for the given country)

 settings = Configuration.for_site(request.site)

 try:
 data = utils.get_shipping_cost(country_code, option, settings)
 except InvalidShippingRate:
 # More than 1 shipping rate for the country exists,
 # but the supplied option doesnt match any
 pass
 except InvalidShippingCountry:
 # A shipping rate for this country does not exist and `default_shipping_enabled`
 # is set to `False` in the longclaw admin settings

Javascript example:

 fetch(
 "api/shipping/cost/",
 {
 method: "POST",
 headers: {
 Accept: 'application/json, application/json, application/coreapi+json',
 "Content-Type": 'application/json"
 },
 credentials: "include",
 body: JSON.stringify({
 country_code: "GB",
 shipping_rate_name: "standard"
 })
 }
).then(response => {...})

title: Product Requests
sidebar_label: Product Requests

This module allows customers to ‘request’ products which are otherwise out of stock.
The request date and product variant are stored, with the customer email optionally being stored (The ProductRequest model
contains a field for this, but template tags by default do not collect this information - it is up to you to store it.)

To install, add it to your INSTALLED_APPS after other longclaw modules:

 INSTALLED_APPS = (
 ...,
 "longclaw.contrib.productrequests"
)

To show a ‘request’ button, you can use the following template tag on your product page:

 {% load productrequests_tags %}

 {% for variant in page.variants.all %}
 {% make_request_btn variant_id=variant.id %}
 {% endfor %}

You can also pass btn_class and btn_text to change the CSS class and text of the resulting button element.
By default they are btn btn-default and Request Product.

This template tag will take care of making the AJAX call to register a request against the product variant.
In order to collect further information - i.e the customer email, you will need to create the button and necessary javascript
yourself. You can use the API client function requestList to post the collected data.

You can view all requests in the admin index page for your product collections. When hovering over a product, alongside
the usual Edit, View Live and Add Child Page buttons is a new View Requests button. This will take you to a page
showing all requests made for each variant of the product.

Installing Longclaw

Longclaw can be installed from pypi:

$ pip install longclaw

The Longclaw CLI can then be used to start a new Wagtail/Longclaw project. It behaves much the same as
the Wagtail CLI:

$ longclaw start my_project

This will provide you with a minimal Wagtail & longclaw website.
Longclaw integrates tightly with Wagtail, so you should be familiar with developing Wagtail sites before continuing:
http://docs.wagtail.io/

In order to process real payments, you will need to install the client library for your chosen payment backend.
This will either be:

	Stripe; pip install stripe

	Braintree (for braintree and paypal payments); pip install braintree

For other payment gateways, you will need to write your own integration.

Next, read about modelling your catalogue and adding products to your new site

Processing Orders

Longclaw provides an orders app, accessible from the Wagtail admin. An order is created
upon a succesful checkout and contains shipping and product details.
Orders can be ‘fulfilled’ in the wagtail admin by click view in the order list view then
selecting fulfill.
As of v0.1 all fulfill does is set a flag on the product model. We plan to introduce automated
email support from v0.2.

title: Payment Backends
sidebar_label: Integrations

Longclaw supports payment capture through Stripe, Braintree and Paypal (Using the Braintree VZero SDK).

To select the payment gateway to use, you must specify the PAYMENT_GATEWAY attribute in your settings.py.

The options are:

	longclaw.checkout.gateways.base.BasePayment. A do-nothing base implementation

	longclaw.checkout.gateways.stripe.StripePayment. Capture payments using Stripe.

	longclaw.checkout.gateways.braintree.BraintreePayment. Capture payments using Braintree.

	longclaw.checkout.gateways.braintree.PaypalVZeroPayment. Capture Paypal payments using the braintree v.zero SDK.

Additional Settings and dependencies

To use payment gateways it is necessary to specify API keys and install client SDK’s for the chosen payment provider.

Stripe

STRIPE_PUBLISHABLE - Your public api key
STRIPE_SECRET - Your secret api key
You will need to install the stripe python sdk (pip install stripe)

Braintree

BRAINTREE_MERCHANT_ID - Your braintree merchant account ID.
BRAINTREE_PUBLIC_KEY - Your public api key
BRAINTREE_PRIVATE_KEY - Your secret api key

Paypal

VZERO_ACCESS_TOKEN - Your access token for the v.zero SDK.

Paypal and braintree require the braintree python SDK (pip install braintree)

Custom Integrations

To implement your own payment integration, you must implement the payment gateway interface. This is simple:

	Inherit from longclaw.checkout.gateways.base.BasePayment

	Implement create_payment. This should take a request object, an amount and optionally a description.
It should use these to capture the payment using your chosen provider. For examples see the implementations in
longclaw.checkout.gateways

	Implement the get_token method. This method should generate tokens used by the payment provider. It accepts a request
object containing post data (request.data). Tokens returned may represent different things depending on the
payment provider - e.g. it may be used to tokenize payment details or generate authentication tokens.

You can define your own requirements for the request data to be submitted to the functions.
create_payment is called in a POST request to the checkout/ api. get_token is similarly called
in a POST request to the checkout/token/ api.

Longclaw aims to be as minimal as possible in order to get the job done. This is why longclaw currently only offers the barest minimum
support necessary to directly create payments with the backend payment provider.

Adding Products

Your new longclaw project has products app installed with ProductVariant, Product and ProductIndex models.
You should add your own custom fields to ProductVariant to meet the demands of your catalogue.

A ProductVariant is a child of the Product model and is used to represent variants of a single product.
E.g different sizes, colours etc.

Product and ProductIndex are not required by longclaw, although this way of modelling your catalogue means that:

	Your models fit into Wagtail way of creating Page models. Here, Product is your Page, with ProductVariant being an
inline model. ProductIndex is the index page for listing all Products.

	It is easy with this setup to model fairly simple catalogues where each product has multiple options. E.g. a music shop selling
CD and vinyl versions of each product.

Other examples might include having multiple ProductIndex models to represent different catalogues - e.g. clothing lines
or categories in a large shop.
You may also wish to create of supporting models for images, categories, tags etc. This is all up to you.

Writing the templates

Since ProductIndex and Product are Wagtail pages, HTML templates should be created for each.
The developer should refer to the Wagtail documentation [http://docs.wagtail.io/en/v1.8.1/topics/writing_templates.html] for further details.
Basic example templates are provided in your_project/templates/products/ when creating a project
with the longclaw project template.

Configuring Shipping

Longclaw allows you to:

	Enable and set a default shipping rate applicable to any country

	Configure multiple shipping rates for individual countries.

The default shipping rate can be enabled and set from the settings -> Longclaw Settings menu
in the Wagtail admin.
If the default shipping rate is enabled, it implies that shipping is available to any country.
When a rate for a given country cannot be found, the default shipping rate will be used.

Shipping rates for individual countries can be configured via the Shipping Countries menu in the
Wagtail admin.

For each country added, you can configure any number of shipping rates. Each shipping rate states the
name, description, price and carrier (e.g. Royal Mail).

title: Configuring Payment
sidebar_label: Payment

Longclaw offers integration with a few payment gateways and it is also fairly easy to integrate your own.
For this tutorial, we will use Braintree to process payments.

Settings and Dependencies

The payment gateway to use must be set in the settings file:

PAYMENT_GATEWAY = 'longclaw.checkout.gateways.braintree.BraintreePayment'

We also need to define settings for access tokens;

 BRAINTREE_SANDBOX = False
 BRAINTREE_MERCHANT_ID = os.environ['BRAINTREE_MERCHANT_ID']
 BRAINTREE_PUBLIC_KEY = os.environ['BRAINTREE_PUBLIC_KEY']
 BRAINTREE_PRIVATE_KEY = os.environ['BRAINTREE_PRIVATE_KEY']

We will need to install this SDK as it is not an explicit dependency of longclaw:

pip install braintree

That is all we need to do to configure our backend!

Front end integration

We will first show how to setup a checkout page using the Checkout view provided by longclaw.
The code shown here is very similar to the implementation of the checkout page here: Ramshackle Audio [https://github.com/JamesRamm/ramshacklerecording]

First, we should load some templatetags which will help us:

{% load longclawcheckout_tags longclawcore_tags %}

As an aside - you may wish to display the items in the basket on our checkout page. The basket items queryset is available as basket
in the views’ context.

Next, we need to setup the forms to gather customer information. There are 2 forms in the context. We will
display and submit them as a single form. Here is an example layout:

<form action="." method="post" id="checkout-form">
 {% csrf_token %}
 {% for field in shipping_form %}
 {% if field.is_hidden %}
 {{ field }}
 {% else %}
 {% if field.errors %}
 <div class="field error">
 {% else %}
 <div class="field">
 {% endif %}
 <label>{{ field.label_tag }}</label>
 {{ field }}
 {% if field.help_text %}
 <p class="help">{{ field.help_text|safe }}</p>
 {% endif %}
 <div class="ui error message">
 <p>{{ field.errors }}</p>
 </div>
 </div>
 {% endif %}
 {% endfor %}
 {% for field in checkout_form %}
 <!-- purposefully ignoring different billing address option to simplify -->
 {% if field.name == 'different_billing_address' %}
 {% else %}
 {% if field.errors %}
 <div class="field error">
 {% else %}
 <div class="field">
 {% endif %}
 <label>{{ field.label_tag }}</label>
 {{ field }}
 <div class="ui error message">
 {% for error in field.errors %}
 <p>{{ error }}</p>
 {% endfor %}
 </div>
 </div>
 {% endif %}
 {% endfor %}

You may wish to layout the form differently. We have purposefully ignored the different_billing_address field
since the Braintree dropin-ui will collect a billing postcode anyway, for its’ own security checks.

Before we close our <form> element, there are 3 further items to add:

 <!-- hidden field for submitting the token back to the server. Name will vary depending on integration-->
 <input type="hidden" id="payment_method_nonce" name="payment_method_nonce"></input>
 <h4 class="ui dividing header">Payment Details</h4>
 <div id="dropin-container"></div>
 <input type="submit" id="submit-button" value="Place Order" class="ui button submit" />
</form>

We add a hidden field. This field will contain a token (string of characters) given by braintree which represents the payment method.
Most payment gateways require something like this, although the name of the field will change between backends.

We then add an empty div with the id dropin-container. This will contain the Braintree Dropin UI.
We could manually create the fields (using e.g. Hosted Fields for braintree or Elements for stripe) for payment forms, however
most integrations offer some sort of ‘dropin’ which are increasingly customisable. For most purposes, this will suffice.

Finally, we add a submit button.

The Javascript

OK, so now we have hidden elements, empty containers….we need to get this stuff populated!
Each payment gateway integration provides the necessary javascript libraries to interact with the gateway.
They are made available via a template tag.
Add them like this:

 <!--Load any client javascript provided by the payment gateway.
 I have chosen braintree as my gateway so the template tag below
 should give me a list of script tags which load the braintree
 SDK's
 -->
 {% gateway_client_js as scripts %}
 {% for js in scripts %}
 {{ js|safe }}
 {% endfor %}

 <!--Finally add the media from the checkout form.-->
 {{ checkout_form.media }}

The checkout form also provides a little javascript to initialise shipping options (when the user selects a shipping country).

Finally, we need to add a little of our own javascript to create the braintree dropin:

 <script type="text/javascript">

 //Initialize shipping options - this function is from the
 //checkout form media.
 initShippingOption('{% longclaw_api_url_prefix %}');

 // Initialize the braintree dropin.
 // The gateway token below is taken from the template tag provided by
 // longclaw. This is calculated depending on the chosen
 // PAYMENT_GATEWAY in the user settings.py
 var button = document.querySelector('#submit-button');

 braintree.dropin.create({
 authorization: "{% gateway_token %}",
 container: '#dropin-container'
 }, function (createErr, instance) {
 button.addEventListener('click', function (event) {
 event.preventDefault();
 if (instance){
 instance.requestPaymentMethod(function (err, payload) {
 // Submit payload.nonce to your server
 if (err) {
 // TODO: Handle this error
 console.log(err);
 }
 else {
 $('#payment_method_nonce').val(payload.nonce);
 document.getElementById("checkout-form").submit();
 }
 });
 }
 });
 });
 </script>

Two things are happening in the above code. First, we initialise the shipping options. Note we are using a template tag
to pass the longclaw API url prefix, since this is customisable in your settings.py

Secondly, we initialise the braintree dropin. Again, we use a template tag to get a token for the gateway.
All payment backends provide the gateway_token template tag, although it is not always necessary.

You may wish to only show the braintree payment form if the user has anything in their basket. In which case you might qualify
the above javascript with {% if basket.count > 0 %} in your template.

As you can see, setting up the checkout is one of the most involved aspects of creating your store. We have worked to simplify this
for v0.2, but welcome any suggestions on how to make it easier!

If you wish to forego the templatetags & forms (e.g. if making a fully React-based frontend), read on. Otherwise, that is the end of the tutorial!

Javascript-Only integration

Below is a walkthrough of integrating a payment gateway (PayPal) without the aid of templatetags etc..

There is a fair amount of work to do to setup the front end when using any payment gateway. Paypal
Express minimises this for us by taking charge of collecting and tokenizing payment data, although we
must still configure it.

The basic client payment flow with Braintree is as follows:

	The client requests a braintree token. Longclaw provides an API endpoint to generate tokens using the braintree SDK

	The client gathers payment details and turns this into a payment method nonce by interacting with the braintree server.
Paypal Express Checkout will take care of this entirely.

	The client submits the payment method nonce to the server to capture the payment. Longclaw provides an API endpoint for all payment captures.

We therefore have three things we need to do in our client-side javascript:

	Call the longclaw API to generate a token

$.get({
url: 'api/checkout/token/',
success: function(response){
 ...
}
})

	Following this, configure the paypal express checkout functionality. This actually has two steps.
We must first create a braintree client using our new token. We then use this to create a braintree
paypal instance.

 braintree.client.create({
 authorization: token
 }, (err, client) => {
 if (err) {
 console.log("handle error creating client");
 return;
 };
 braintree.paypal.create({
 client: client
 }, (err, paypalInstance) => {
 if (err) {
 console.log("handle error creating paypal");
 return;
 }
 console.log("Paypal instance": paypalInstance);
 });
 });

	Once paypal has created the nonce for the entered payment details, we must submit this
to our server so longclaw can capture the payment.
To do this, we must have a button which we want to use to launch the paypal express checkout window.
We ‘attach’ the paypal instance we just created to the button like so:

 paypalButton.addEventListener(
 'click',
 function (){
 paypalInstance.tokenize({
 flow: 'checkout',
 intent: 'sale',
 amount: totalAmount,
 currency: currency,
 displayName: 'Ramshackle Audio',
 enableShippingAddress: enableShippingAddress,
 shippingAddressEditable: shippingAddressEditable
 }, (err, tokenPayload) => {
 if (!err) {
 handleSubmit(tokenPayload);
 }
 else {
 console.log(err)
 }
 });
 });

In this example paypalButton is a DOM node referring to the button element we wish to attach paypal to and handleSubmit
is a function which will actually POST the payload to the longclaw api endpoint (api/checkout/)

We can make all these nested API calls simpler if we use ES6 Promises and the fetch API:

 // Wrap braintree js functions as promises
 function braintreeClientCreate(token){
 return new Promise(function(resolve, reject){
 braintree.client.create({
 authorization: token
 }, (err, data) => {
 if (err) return reject(err);
 resolve(data);
 });
 });
 }

 function braintreePaypalCreate(client){
 return new Promise(function(resolve, reject){
 braintree.paypal.create({
 client: client
 }, (err, data) => {
 if (err) return reject(err);
 resolve(data);
 });
 });
 }

 // functions for tokenizing and calling the longclaw checkout
 function getToken() {
 return fetch(
 '/api/checkout/token/',
 {
 method: 'GET',
 headers: getRequestHeaders(),
 credentials: 'include' }
)
 .then(checkStatus)
 .then(parseJSON);
 }

 function checkout(data) {
 return fetch(
 '/api/checkout/',
 {
 method: 'POST',
 headers: getRequestHeaders(isForm),
 credentials: 'include',
 body: JSON.stringify(data)
 }
)
 .then(checkStatus)
 .then(parseJSON);
 }

 // This is where we actually setup paypal
 export function setupBraintreePaypal(totalAmount,
 paypalButton,
 shippingAddress,
 shippingRate,
 email,
 currency='GBP',
 enableShippingAddress=false,
 shippingAddressEditable=false){

 return getToken()
 .then(data => braintreeClientCreate(data.token))
 .then(client => braintreePaypalCreate(client))
 .then(paypalInstance => paypalButton.addEventListener('click',
 function (){
 paypalInstance.tokenize({
 flow: 'checkout',
 intent: 'sale',
 amount: totalAmount,
 currency: currency,
 displayName: 'Ramshackle Audio',
 enableShippingAddress: enableShippingAddress,
 shippingAddressEditable: shippingAddressEditable
 }, (err, tokenPayload) => {
 if (!err) {
 return checkout({
 address: shippingAddress
 shipping_rate: shippingRate,
 email: email,
 payment_method_nonce: tokenPayload.nonce
 });
 }
 else {
 console.log(err)
 }
 });
 })
)
 }
 }

 // helper functions for making requests
 function getRequestHeaders(form = false) {
 let contentType = 'application/json';
 const headers = {
 Accept: 'application/json, application/json, application/coreapi+json',

 };
 if (!form) headers['Content-Type'] = contentType;
 const csrf = JsCookie.get('csrftoken');
 if (csrf) headers['X-CSRFToken'] = csrf;
 return headers;
 }

 /**
 * Check the response status and raise an error if it's no good.
 * @param {object} response - the http response object as provided by fetch
 * @returns {object} - the http rsponse object or throws an error
 */
 function checkStatus(response) {
 if (response.ok) {
 return response;
 }
 return response.json().then(json => {
 const error = new Error(response.statusText)
 throw Object.assign(error, { response, json })
 })
 }

 /**
 * Return an object given an http json response
 * @param {object} response - json encoded response object as provided by fetch
 * @returns {object} - The parsed json
 */
 function parseJSON(response) {
 return response.json();
 }

The total amount, shipping address, shipping rate and email address of the customer are passed into the setup function;
it is up to the front end developer to create the necessary forms to gather these.

title: Displaying Products
sidebar_label: Frontend

You will see that if you click on View for the products or product index, you will taken to a basic product index or product page.
You will find the HTML templates for these pages in catalog/templates/catalog.
This basic template uses CSS grid to show the products as a grid of ‘cards’.
You can check out the CSS in longclaw_bakery/static/css/longclaw_bakery.css.
The CSS is included in longclaw_bakery/templates/base.html which our product_index.html extends.

The Wagtail documentation also has some comprehensive documentation on writing templates for Pages [http://docs.wagtail.io/en/v1.9/topics/writing_templates.html].

For more complex projects, you might want to use Sass and/or other frontend libraries. In this case you might want to look at using Webpack to bundle your static assets. There are some useful guides [https://owais.lone.pw/blog/webpack-plus-reactjs-and-django/] out there to help you.

Improving the product page

The basic product page is missing a few things:

	The fields we added to the model (vegetarian, gluten free) are not shown

	Its not possible to add the product to the basket!

	We can’t see any information about the different variants

Lets deal with the most pressing first…

Adding Products to the Basket

When a product has different variations, there are usually various different ways to display those variations and allow a customer to add one to their basket.
For this reason, the longclaw project template doesn’t include any markup for this.

We will cover a few options here, starting with what I am going to include in the bakery website.

Table display

Adding a product to the basket requires a HTTP request to be made to longclaw.
Longclaw makes this a bit easier for you by offering a helpful template tag to create an Add To Basket button for your product variants, which takes care of the javascript for you.
In your template, load the basket tags:

 {% load basket_tags %}

You can now use the tag to render a button for each product variant:

 {% add_to_basket_btn variant.id btn_text="Add To Basket" btn_class="btn btn-default" %}

In my bakery site, I am going to display these buttons along with more information about each variation in a table:

<table>
 <thead>
 <tr>
 <th>Type</th>
 <th>Price</th>
 </tr>
 </thead>
 <tbody>
{% for variant in page.variants.all %}
<tr>
 <td><p>{{variant.ref}}</p></td>
 <td><p>€{{variant.price}}</p></td>
 <td>
 {% if variant.stock > 0 %}
 {% add_to_basket_btn variant.id btn_text="Add To Basket" %}
 {% else %}
 Sold out
 {% endif %}
 </td>
</tr>
{% endfor %}
</tbody>
</table>

Dropdown Selection

The idea here is to provide a dropdown to select a variant and a separate ‘Add to Basket’ button, such as this:

[image: tutorial/assets/dropdown-select.png]Dropdown button

The dropdown can be achieved with a simple select elemt:

<select id="variant-select">
{% for variant in page.variants.all %}
 <option value="{{variant.id}}">{{variant.ref}}</option>
{% endfor %}
</select>

We also need a button:

 <button id="add-to-basket-btn">Add To Basket</button>

We then need to intercept the click event of the button to make the HTTP request:

const btn = document.getElementById('add-to-basket-btn');
const select = document.getElementById('variant-select');

btn.addEventListener("click", (e) => {
 e.preventDefault();
 const variant_id = select.options[select.selectedIndex].value;
 longclawclient.basketList.post({
 prefix: "{% longclaw_api_url_prefix %}",
 data: { variant_id }
 });
});

Note two things in the javascript above - the use of longclaw_api_url_prefix and longclawclient. These require you to load the core template tags and the client javascript in your template. You can do this with the following lines in your django template:

{% load longclawcore_tags %}

/* ...HTML */

{% longclaw_vendors_bundle %}
{% longclaw_client_bundle %}

The Basket API also allows you to specify the quantity of an item to add.

Amazon style selection

Navbar Basket Link

One other thing I want to have in my shop is the common ‘basket’ link in the nav bar. This would be easy enough, but I also want to show the number of items in my basket:

[image: tutorial/assets/basket-link.png]Basket Link

In base.html you will see that the project template already provided you with a basic top header bar:

<div class="header">
</div>

I’m going to flesh it out to add my logo and links on the left and a basket icon on the right:

<div class="header">
 <div class="nav-left">
 Longclaw Bakery
 Products
 </div>

 <div class="nav-right">
 <i class="fas fa-shopping-basket fa-lg" aria-hidden="true"></i>
 </div>
</div>

Now some CSS:

.header {
 grid-area: header;
 display: flex;
 flex-direction: row;
 justify-content: center;
 padding: 5px;
 background-color: var(--brand-primary)
}

.header-brand {
 flex: 1;
}

Displaying the Basket

Now my online bakery is starting to really take shop. I can add new products, customers can browse them and add them to their basket.

So next, I have to allow our customers to actually see whats in their basket, edit it and proceed to checkout.

Longclaw provides a REST API endpoint for retrieving basket data and a django view.

To use the django view, you must provide a template titled basket/basket.html.
It is common to provide a link to the basket page in the header. We can use the url tag in
our site header to provide the link:

{% url 'longclaw-basket' %}

In the basket template, we have access to all basket items under the basket context:

{% for item in basket %}
...
{% endfor %}

For the full implementation of the basket template, take a look at the longclaw demo repository [https://github.com/JamesRamm/longclaw_demo/blob/master/longclaw_demo/templates/basket/basket.html]

title: Setup
sidebar_label: Setup

Topics covered:

	Longclaw installation

	Scaffolding a project

	Settings

	Database migration and initial data

Start off by creating a virtual environment for your project:

 $ cd my_project_folder
 $ virtualenv my_project
 $ source my_project/bin/activate

Install Longclaw into it:

(my_project) $ pip install longclaw

Finally, use the longclaw CLI to setup your django project:

(my_project) $ longclaw start bakery

Now we have a django project which looks like this::

my_shop/
 home/
 bakery/
 catalog/
 search/
 manage.py
 requirements.txt

The home and search folders are default folders used in Wagtail projects. Users of Wagtail
will be familiar with these.
The catalog folder contains a skeleton model for our product variants which we will come to later.

Settings

The settings module contains global configuration for our website, for both development and production.
If you are familiar with Django, you will already know about settings. Longclaw introduces 2 extra settings;
PAYMENT_GATEWAY and PRODUCT_VARIANT_MODEL.
Note that the PRODUCT_VARIANT_MODEL is already pointing to 'catalog.ProductVariant'

The PAYMENT_GATEWAY refers to the 3rd party payment processor we which to use. Longclaw currently supports
Braintree, Paypal and Stripe. In this tutorial we will use Stripe. We need to install the client python library for
our chosen payment gateway:

(my_project) $ pip install stripe

Now, lets specify the payment gateway in the settings module. The file we want to edit is in bakery/settings/base.py
(remember, bakery is the name of the longclaw project, so replace this with your chosen name).

Change the entry for PAYMENT_GATEWAY from 'longclaw.checkout.gateways.BasePayment' to 'longclaw.checkout.gateways.stripe.StripePayment'

By dynamically specifying the PAYMENT_GATEWAY longclaw can support custom integrations. See integrations for more info.

To use Stripe we will need to inform longclaw of our access tokens. To do this, add the following setting:

STRIPE_SECRET = 'sk_live_xxx'

Where sk_live_xxx is your stripe secret key, accessable from the stripe dashboard, under Developers -> API Keys.

When using Stripe, and indeed most other payment gateways, you can usually use a ‘test’ key so you can develop without creating real payments.
In Stripe, the test key will begin with sk_test_.

Note that if you are storing your website code in a public repository, or otherwise sharing it, you should be careful about specifying ‘secrets’ in the code.
Instead, use an environment variable:

STRIPE_SECRET = os.environ.get('STRIPE_SECRET', '')

Migration

Now we can run the initial migration and create an admin user:

python manage.py makemigrations catalog home
python manage.py migrate
python manage.py createsuperuser
python manage.py loadcountries

If you have a problem with the initial migration (python manage.py migrate) relating to InvalidBasesError, try commenting out all longclaw apps
(and your shop apps, home, search and the project name app), plus the ROOT_URLCONF line and run the migrations again. Next, add back the apps and ROOT_URLCONF and
run the migrations one more time. If you encounter problems at runtime, such as OperationalError: no such table, try running migrate again with the --run-syncdb option.

Great! Now we are setup, we can start adding products

title: Longclaw Bakery Tutorial
sidebar_label: Introduction

This tutorial will take you through the entire process of setting up an online shop using Longclaw.
We will create a fictional bakery, where customers can order bread online.

title: Adding Products
sidebar_label: Adding Products

Topics covered:

	Creating the ProductIndex and ProductVariant model

	Customising the models

	Adding products via the admin

Initial Models

Longclaw makes as few assumptions as possible when it comes to modelling your products, since the
requirements of different shops can be wide and varied.

You must create a ProductVariant model (it can be called anything) and implement
a small number of fields Longclaw expects.
The easiest way to do this is by inheriting from longclaw.products.ProductVariantBase.

Head over to catalog/models.py. You will see that longclaw created the following basic models for you:

	ProductIndex. This model is used for listings of products.

	Product. This is the model of a single product type. In our bakery, we might have a ‘Farmhouse Loaf’ product.

	ProductVariant. This model captures variations of a product. For example, we might offer our ‘Farmhouse Loaf’ using different flour types, different sizes, sliced or not sliced all for different prices. Note that it inherits from ProductVariantBase. This is important since there are small number of fields (such as price) that other longclaw packages expect to be present in order to function correctly.

This is just one way of modelling yor catalogue but you are not bound to it. ProductVariant is the only model
required by Longclaw and precisely what this represents is up to your (e.g. it could be the product itself, or, as the name
suggests, a variant of a product). You could create multiple ‘index’ pages, perhaps representing different lines
aswell as multiple ‘product’ type pages, or do away with Product completely.

Customising

The ProductVariantBase model provides the base_price, ref and slug fields.

The ref field is intended to be used as a short description or sub-title to help distinguish a particular variant.
The slug field is autogenerated from the ref and the parent Product title.

ProductVariant, Product and ProductIndex are all Wagtail Pages. If you are not familiar, it is important that you take a look at the Wagtail documentation [http://docs.wagtail.io/en/v2.3/topics/pages.html] before going further.

In our bakery, there are other product attributes we want to capture. We should add these to the ProductVariant model. Lets just consider a couple of basic fields:

	Is it gluten free or not?

	Suitable for vegetarians?

Lets adjust the ProductVariant model to reflect this:

class ProductVariant(ProductVariantBase):
 gluten_free = models.BooleanField(default=False)
 vegetarian = models.BooleanField(default=False)

Dynamic Pricing

The ProductVariant model can be configured so that the price is dynamically calculated. This is great - we can selectively apply a discount to our variants (or do anything else for that matter)!

The ProductVariant model provides a price property which is used throughout longclaw. By default, it simply returns the base_price attribute.
We can override it to hold our custom price calculation.

For our bakery, I’ve decided that I want to be able enable a variable discount whenever we like.

So lets add a couple more fields to our model to provide the discount information:

 discount = models.BooleanField(default=False)
 discount_percent = models.PositiveSmallIntegerField(
 default=20,
 validators=[
 MaxValueValidator(75)
]
)

Since I don’t want to make mistakes and start offering my bread for free, I have limited the maximum discount to 75%.
Finally, lets override the price getter to apply the discount:

@ProductVariantBase.price.getter
def price(self):
 if self.discount:
 discount_price = self.base_price * Decimal((100 - self.discount_percent) / 100.0)
 return discount_price.quantize(Decimal('.01'), decimal.ROUND_HALF_UP)
 return self.base_price

Now, create and run the migrations for our catalog app:

python manage.py makemigrations catalog
python manage.py migrate

Further to the product models, the project template (created by longclaw start) also provided a ProductImage model. If you do not want an image(s) related to the Product model, delete this model and remove the InlinePanel line from the Product class.
I leave it as an exercise to the reader to allow images at the ProductVariant level.

Using the Admin

The models are ready - Lets open up the admin and start adding our products.

Run the server:

python manage.py runserver

And navigate to localhost:8000/admin.
You will need to sign in with the super user you created at the start of the tutorial.

Under ‘Pages’, select the root page:

[image: tutorial/assets/longclaw-select-root-page.png]Root page

On the ‘Root’ screen select ‘Add Child Page’ at the top. Here I selected my ‘Home’ page, but if you are running a small shop, you may wish your home page to be your product listing, in which case you might select ‘Product Index’.

[image: tutorial/assets/longclaw-bakery-create-product-index.png]Adding a home page

We can now add Product models as children of ProductIndex. Only pages of type Product can be created under ProductIndex.

Adding a Product

Under the explorer homepage, we should now see our newly created ProductIndex. We can select Add child page to add our first
Product.
Add a title, description then start adding variants.
You will see that in the product variants are the custom fields we added for
applying discounts.

[image: tutorial/assets/longclaw-bakery-add-product.png]Image of the product

If we navigate back to the product index page, we see the new product listed:

[image: tutorial/assets/longclaw-bakery-product-index.png]Image of the product index

title: Configuring Shipping
sidebar_label: Shipping

Now we can display products and add them to the basket, we must configure our shipping rates
before setting up the checkout process.

Per Country Rates

Shipping rates are set on a per-country basis via the Shipping page in the wagtail admin.
Initially, no countries will be available - Longclaw comes with a set of country data which can be loaded into the database
using the loadcountries command:

 python manage.py loadcountries

In the image below, we set a standard rate for the UK. It is possible to select multiple countries
for a rate to apply to. We can also create more than one shipping rate for the same country.

[image: tutorial/assets/shipping.png]Shipping

Default Shipping Rate

We can configure a default shipping rate to apply to all countries we have not explicitly specified.

By enabling default shipping, you imply that you ship to all countries. If you do not wish this
you should not enable default shipping.

To enable default shipping:

	Select settings from the wagtail admin menu

	Select Configuration

	Fill in Default Shipping Rate and Default Shipping Carrier

	Ensure Enable Default Shipping is checked.

[image: tutorial/assets/default_shipping.png]Default shipping

Currency

You can also define the currency in Longclaw Settings. This applies site wide. It is mostly semantic -
Longclaw assumes all calculations & prices are in the same currency - however some payment gateways require the
currency to be specified.

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/comment-bright.png

_static/ajax-loader.gif

